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Abstract. We describe the solution of various Becker–Döring models. First, we analyse
equilibrium and steady-state solutions, together with the large-time behaviour of solutions for
the case of constant monomer concentration. Then we solve a weak fragmentation, constant
mass, case by using matched asymptotic expansions. The methods are applied both to the
full Becker–D̈oring equations and to a coarse-grained, or contracted, system. Comparison of
the results show good qualitative agreement; all the phenomena present in the full model are
reproduced in the contracted system and no anomalous effects are introduced. However, the
quantitative agreement depends strongly on the choice of parameter values in the contracted
system.

1. Introduction

The Becker–D̈oring equations were originally proposed in 1935 as a model for nucleation
[3]. The model assumes that clusters form by individual particles (monomers) colliding
with each other and grow via subsequent collisions with monomers. The fundamental
assumption is that clusters do not interact with each other. The collisions are modelled
as chemical reactions, leading to a coupled system of ordinary differential equations for
the concentrations of clusters of each size. If we denote anr-mer cluster byCr then the
reactions we are concerned with are

Cr + C1
 Cr+1. (1.1)

Note that we allow the mechanism to be reversible; there are thus two reaction rates
associated with (1.1) and we denote the forward rates byar and the reverse bybr+1,
all of which are non-negative. The net flux from clusters of sizer to r + 1 we write asJr .

In the original work [3] it is assumed that the monomer concentration is fixed. The
complete system of equations is then

ċr = Jr−1− Jr r = 2, 3, 4, . . .

Jr = arcrc1− br+1cr+1 r = 1, 2, 3, . . .
(1.2)

wherec1 is a prescribed constant. From (1.2) it follows that the total mass (or density)

% =
∞∑
r=1

rcr (1.3)
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satisfies

%̇ = J1+
∞∑
r=1

Jr . (1.4)

Later Penrose and Lebowitz [10] suggested a modification whereby the total mass of
the system is kept constant, the monomer concentration being allowed to vary. This leads
to a more complex system of equations, since the equation for the monomer concentration
couples all the other concentrations together in a nonlinear fashion. The governing equations
are then

ċ1 = −J1−
∞∑
r=1

Jr

ċr = Jr−1− Jr r = 2, 3, 4, . . .

Jr = arcrc1− br+1cr+1 r = 1, 2, 3, . . . .

(1.5)

These equations have a rich structure which has, for example, aided Ballet al [2] in their
existence and uniqueness proofs. Some of this structure is noted at the start of section 4
and is used in constructing the coarse-grained contraction in sections 3 and 5. The density
(1.3) is formally conserved by (1.5).

It is the latter system (1.5) that has found greater applicability to physical situations in
recent years. The Becker–Döring equations are now applied to a wide range of chemical
processes in which phase transitions are involved. These include micelle formation [14, 5],
vesicle formation [6], gel-formation and solidification [15]. The aim of this paper is to find
asymptotic solutions to the Becker–Döring system of equations in certain limits when the
forward and reverse rates are independent ofr (though the results are strongly indicative
of the behaviour for much more general cases; such generalizations will be presented
elsewhere). Due to its wider applicability, we are primarily concerned with (1.5); however,
an analysis of the simpler set, (1.2), proves highly instructive and so will be presented first.

The closest related work to ours is that of Slezovet al [13], who heuristically identified a
succession of stages which the nucleation process passes through, and estimated the duration
of each. In this paper we apply systematically the method of matched asymptotic expansions
to solve a similar set of governing equations and demonstrate how each asymptotic region
matches into its neighbours. We also give the cluster-size distribution at the start and end
of each of the key stages of the process. Other previous work includes that of Shneidman
[12] who found analytical and numerical approximations to the nucleation waiting time, but
relied strongly on steady-state assumptions so that such approaches cannot account for the
transient behaviour occurring when a system is initiated from monodisperse conditions, for
instance.

Another class of approximate solutions has been provided by use of a coarse-graining
approach [5, 15, 6] and we shall give asymptotic solutions to such coarse-grained models
also; these will be compared with our results for the full Becker–Döring equations,
providing measures of the errors introduced by the coarse-graining approximation procedure.
Hounslowet al [7, 8] have constructed coarse-grained versions of the general coagulation–
fragmentation equations, aiming to find approximate solutions using such a procedure. These
solutions were compared with numerical results and some simple analytical checks were
performed by analysing the temporal behaviour of the first few moments of the cluster
distribution function. Our work has some similarities with this, but we are able to quantify
fairly precisely the relationships between our coarse-grained solutions and those of the full
system and to indicate means by which optimal choices of parameters in the coarse-grained
system may be made.



Asymptotic solutions of the Becker–D¨oring equations 7171

The rest of the paper is organized as follows. Section 2 contains a description
of equilibrium solutions and steady-state solutions of the original Becker–Döring
equations (1.2) and of the way in which general solutions approach these special solutions
in the large-time limit. In section 3 a coarse-grained version of these equations is derived
and the results of section 2 are generalized to cover the new system. Section 4 contains
the analysis of the modified Becker–Döring equations (1.5) in the case of a coagulation
dominated system, the solution being constructed by matching asymptotic solutions over
a series of timescales. These results are generalized to cover the coarse-grain contracted
system in section 5. The paper concludes with a discussion of the results in section 6.

2. Original formulation of Becker–Döring

2.1. Formulation

We aim to analyse the original Becker–Döring system (1.2), in which the monomer
concentrationc1 is kept fixed, for constant forward and backward rate coefficients,ar = a,
br = b for all r. Hence

ċr = Jr−1− Jr Jr = ac1cr − bcr+1. (2.1)

The initial conditions we are primarily interested in are those in which all concentrations are
zero, but the results which follow are valid for any initial conditions which decay sufficiently
rapidly with r (see section 2.4.3). We shall make much use of the partition functionQr ,
which is related to the rate coefficients viaarQr = br+1Qr+1 with Q1 = 1. The quantity
Qr can be related to the chemical potential of the cluster of sizer [5]. In this example the
partition function is thusQr = (a/b)r−1. We introduce the quantityθ = ac1/b to simplify
many of the subsequent calculations.

In the case of monodisperse initial conditionscr(0) = c1δr,1, use of Laplace transforms
in t enables one to find the exact solution to (2.1) as

cr = (r − 1)c1θ
(r−1)/2

∫ t

0

e−(ac1+b)t ′Ir−1(2
√
bac1t

′)
t ′

dt ′ r > 2 (2.2)

whereIr−1 is a modified Bessel function. However, rather than directly exploiting (2.2),
which it does not seem possible to generalize to the (nonlinear) constant mass case, we shall
develop asymptotic methods to investigate the long-time behaviour of the system (2.1). We
start by considering the time-independent states which are candidates for the system to
approach.

2.2. Equilibrium solution

The most obvious state which may be approached is the equilibrium configuration. This is
found by detailed balancing in equations (2.1), which simply means setting the fluxesJr to
zero for allr and solving for the concentrationscr to give

cr = Qrc
r
1 = θr−1c1. (2.3)

Since we requirecr → 0 asr →∞, we can deduce that (2.3) is relevant only for monomer
concentrationsc1 < b/a, so thatθ < 1. The density (1.3) is then given forθ < 1 by

% = c1

(1− θ)2 . (2.4)

If θ > 1, we need to look at a wider class of possible attractors to which the system may
converge, namely the full class of steady-state solutions.
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2.3. Steady-state solution

Here, instead of detailed balancing (i.e. solvingJr = 0), we consider all time-independent
solutions, which we shall distinguish from the previous case (equilibrium solutions) by
calling steady-state solutions. From (2.1) we require thatJr = J , independent ofr, so that
there is a steady flux through the system; the flux out of one aggregation number is exactly
balanced by the flux in. In this case, detailed balancing fails. Solving the constant flux
condition with a given monomer concentration, we find that

cr = Qrc
r
1

[
1− J

r−1∑
s=1

1

asQsc
s+1
1

]
= c1

[
θr−1− J (θr − θ)

ac2
1(θ − 1)

]
. (2.5)

If θ < 1 (2.5) implies thatcr → −J/b(1− θ) as r → ∞ which, for J 6= 0, requires
either thatJ < 0, which is unphysical due to there being a flux of mass back from arbitrarily
large aggregation numbers, orcr < 0, which is also unphysical. Thus forc1 < b/a, steady-
state solutions withJ 6= 0 are not physically relevant. Forθ > 1, however, we have the
solution cr = c1 for all r whenJ = c1(ac1 − b) > 0; this value ofJ corresponds to the
weakest possible singularity asr → ∞, all other values ofJ producing solutions with
cr → ±∞ as r → ∞. As θ → 1+ we haveJ → 0+ and for θ = 1 the two families
coincide, this being the bifurcation point.

To summarize the above, ast →∞ we expect the system to approach the equilibrium
solution (2.3) whenc1 < b/a and the steady-state solutioncr = c1 whenc1 > b/a, in which
caseJ = c1(ac1 − b). This information can be summarized in a bifurcation diagram—see
figure 1.

The difference betweenθ < 1 and θ > 1 can also be seen in the behaviour of the
function

V =
∞∑
r=1

cr

(
log

(
cr

Qrc
r
1

)
− 1

)
=
∞∑
r=1

cr(logcr − (r − 1) logθ − logc1− 1). (2.6)

For θ < 1, the equilibrium solution is a minimizer ofV , whereas (2.6) is not bounded
below whenθ > 1. It can be shown that

dV

dt
= −

∞∑
r=1

(acrc1− bcr+1)(log(acrc1)− log(bcr+1)) (2.7)

Figure 1. Bifurcation diagrams showing the decay rate of the cluster distribution function and
reciprocal of density as functions ofθ for equilibrium solutions (ES) and steady-state solutions
with J = c1(ac1 − b) (SSS). Dotted and broken lines represent unphysical solutions.
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so that dV/dt 6 0 with equality only at equilibrium, and henceV is a Lyapunov function
whenθ < 1.

Note that, while the steady-state solutions described above are those which are least
singular asr → ∞, they do not satisfycr → 0 asr → ∞ and consequently do not have
finite density. They cannot therefore provide uniformly valid descriptions of the behaviour
as t →∞ and in the next section we use the method of matched asymptotic expansions to
complete the picture.

2.4. Large-time asymptotics

2.4.1. Outer solution. For θ 6 1 we expect

cr ∼ θr−1c1 Jr → 0 ast →∞ (2.8)

while for θ > 1 we anticipate that providedr is not too large

cr ∼ c1 Jr ∼ c1(ac1− b) as t →∞. (2.9)

As already noted, (2.9) is not consistent with the conditions that

cr , Jr → 0 asr →∞ (2.10)

and further regions are needed withr large in order to satisfy (2.10); (2.9) thus provides
the leading term in an outer expansion in the limitr →∞. In fact, (2.8) is not uniform in
r either; see section 2.4.4.

We postulate that, forθ > 1, (2.9) is valid forr/s(t) < 1, wheres(t) � 1 remains to
be determined, and that the outer solution is, to O(1),

cr = c1 Jr = c1(ac1− b) r/s(t) < 1

cr = 0 Jr = 0 r/s(t) > 1.
(2.11)

To find the position of the ‘interface’,r = s(t), we now construct and solve an equation
for the density of the system.

The density of (2.11) satisfies% ∼ 1
2c1s

2. Since% satisfies (1.4), it follows, again using
(2.11), thatc1sṡ = c1(ac1− b)s so that

s(t) = (ac1− b)t %(t) ∼ 1
2c1(ac1− b)2t2 as t →∞ (2.12)

which satisfies, as anticipated,s(t) → ∞ as t → ∞. The functionV , defined by (2.6),
diverges as− 1

2c1(ac1− b)2 log(ac1/b)t
2 in this limit.

2.4.2. Transition layer forθ > 1. The transition ast → ∞ between the two regions in
(2.11) takes place smoothly, rather than in the abrupt fashion suggested by (2.11). This
smoothing occurs over an interior layer close tor/s = 1 which we now describe. The
leading order behaviour ofcr in this region is described by a continuum formulation of the
Becker–D̈oring equation. Treatingr as a continuous variable and expanding the differences
in (1.2) in terms of derivatives, we find that to leading order ast →∞

∂c

∂t
= 1

2
(ac1+ b)∂

2c

∂r2
− (ac1− b)∂c

∂r
. (2.13)

Since we are here concerned with the large-time asymptotics, we change variables from
r to z = r − s(t) in order to focus on the transition region. Writingcr(t) = f (z, t) and
using (2.12) enables the leading order system to be rewritten as

∂f

∂t
= 1

2
(ac1+ b)∂

2f

∂z2
(2.14)
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with matching conditionsf (z, t) → 0 as z → +∞ and f (z, t) → c1 as z → −∞.
The large-time asymptotics of (2.14) will therefore be governed by the similarity solution
f (z, t) = 1

2c1 erfc(z/
√

2(ac1+ b)t), so that

cr(t) ∼ 1

2
c1 erfc

(
r − (ac1− b)t√

2(ac1+ b)t
)

as t →∞ with r − (ac1− b)t = O(t1/2).

(2.15)

The transition layer scaling is thus(r − s)/s = O(t−1/2).

2.4.3. Outer (far-field) region forθ > 1. Earlier, see (2.11), we postulated that the
concentrations beyond the transition layer tend to zero ast →∞. Now we must return to
find a leading order representation of the solution inr/s(t) > 1 which, in view of the need
to match with (2.15), is exponentially small.

In this region we apply the WKB method to the discrete system (2.1), substituting
cr(t) ∼ A(r, t)ew(r,t). At leading order, we then obtain the continuum equation

∂w

∂t
= b exp

(
∂w

∂r

)
− b − ac1+ ac1 exp

(
−∂w
∂r

)
(2.16)

with the correction terms giving

∂A

∂t
= ac1

(
1

2
A
∂2w

∂r2
− ∂A
∂r

)
exp

(
−∂w
∂r

)
+ b

(
1

2
A
∂2w

∂r2
+ ∂A
∂r

)
exp

(
∂w

∂r

)
. (2.17)

To match with (2.15), we require thatw take the self-similar formw(r, t) = tF (η), η = r/t ,
with

F(η)− ηF ′(η) = beF
′(η) − b − ac1+ ac1e−F

′(η). (2.18)

which is of Clairaut’s form (see, for example, [11]). It is the singular solution to (2.18) we
require since the general solutions (satisfyingF ′′ = 0) correspond to solutions which have
exponentially decaying initial concentration profiles; we note the behaviour for exponentially
decaying initial data in appendix A. Here, we limit our analysis to initial conditions which
decay more rapidly, for which the singular solution is required, namely

F(η) =
√
η2+ 4ac1b − b − ac1− η log

(
η +

√
η2+ 4ac1b

2ac1

)
. (2.19)

This provides an alternative derivation ofs(t) = (ac1−b)t , since (2.19) implies thatF = 0
at η = ac1 − b. Using (2.14), we find from (2.17) thatA = G(r/t)/

√
t , whereG(r/t)

depends on the initial conditions and cannot be determined by the large-time asymptotics.
This implies the concentrations of clusters beyond the transition layer behave as

logcr ∼
√
r2+ 4ac1bt2− (ac1+ b)t − r log

(
r +

√
r2+ 4ac1bt2

2ac1t

)
− 1

2 log t + logG(r/t). (2.20)

It is easily shown by matching into the transition region that

G(η) ∼ c1

η − ac1+ b

√
ac1+ b

2π
asη→ (ac1− b)+. (2.21)
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Figure 2. Diagram showing the matching of the leading order outer solutioncr = c1, the
transition layer solution (2.15) and the far-field solution (2.19) for the case ofa = 3, c1 = 1,
b = 1, t = 100.

Figure 2 illustrates the matching of the various regions. We note that for monodisperse
initial conditions, the functionG(η) can be found from an asymptotic expansion of the
exact solution (2.2), giving

G(η) =
η
(
η +

√
η2+ 4abc1

)
2a
√

2π(η2+ 4abc1)1/4
(√
η2+ 4abc1− b − ac1

) . (2.22)

2.4.4. Large-time asymptotics forθ 6 1. While (2.3) represents a finite mass solution for
θ < 1, it is nevertheless not uniformly valid ast →∞ because it decays only algebraically
at infinity. Additional regions are once again necessary to describe solutions with more
rapidly decaying initial conditions. These can be deduced immediately from the preceeding
analysis, since under the transformationcr = θr−1φr the Becker–D̈oring equations (1.2)
become

φ̇r = Hr−1−Hr Hr = bφr − aφ1φr+1. (2.23)

The role of the forward and backward rates (ac1 and b respectively) are thus reversed.
In particular, if the forward rate is greater than the backward rate in thec-formulation
(ac1 > b), the reverse is true in theφ-formulation. The substitution thus takes theθ < 1
and θ > 1 cases into one another, withθ being replaced by 1/θ ; all the results from the
θ > 1 case can thus be directly carried over to the present case. Forθ < 1, the asymptotic
solution

φr(t) ∼ 1

2
φ1 erfc

(
r − (b − aφ1)t√

2(b + aφ1)t

)
(2.24)
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to (2.23) is equivalent to (2.15) and produces, after ‘inversion’, the result that forθ < 1

cr(t) ∼ 1

2
θr−1c1 erfc

(
r − (b − ac1)t√

2(ac1+ b)t
)

as t →∞, r − (b − ac1)t = O(t1/2)

(2.25)

which clearly matches with (2.3). The special case ofθ = 1 is invariant under the
transformation and has asymptotic solution

cr(t) ∼ c1 erfc

(
r

2
√
bt

)
as t →∞ for r = O(t1/2) (2.26)

in this case there being no advection term in (2.13) carrying mass to larger values ofr; at
large times, the density (1.3) grows linearly,% ∼ bc1t , and the Lyapunov function (2.6)
diverges according to

V ∼ 2c1

√
bt

∫ ∞
0

erfc(η)[log erfc(η)− 1] dη < 0. (2.27)

Both therefore grow more slowly than whenθ > 1.
Beyond the transition layer there is a further asymptotic region in which the

concentrations decay to zero asr/t → ∞. In this regime the concentrations are again
governed by (2.20),G(η) depending on the initial concentrations. The far-field structure is
thus the same for allθ . By matching into the transition region, we see that forθ 6 1

G(η) ∼ c1

θ(η − b + ac1)

√
ac1+ b

2π
asη→ (b − ac1)

+. (2.28)

Equation (2.22) again applies in the case of monodisperse initial conditions.

3. Coarse-grained system with constant monomer

3.1. Formulation

A coarse-grained contraction of the equations (1.2) relies on grouping clusters of similar
sizes together and eliminating all but one of the variables that describe their concentrations.
The one we choose to keep is that for the largest cluster size in the group. Since the monomer
concentration is a parameter, this is not taken to be part of the averaging procedure and we
definex1 := c1. The first stage of the process is to decide how to split up all the aggregation
numbers into groupings. Here, we shall lump the same number,λ, of different cluster sizes
together into each grouping. For example, if we chooseλ = 4, thenx2 is used in place of
the concentrations previously denotedc2, c3, c4, c5, andx3 in place ofc6, c7, c8, c9, and so
on. The procedure is perhaps better shown diagramatically:

c1︸︷︷︸
x1

c2 . . . cλ+1︸ ︷︷ ︸
x2

cλ+2 . . . c2λ+1︸ ︷︷ ︸
x3

. . . c(p−2)λ+2 . . . c(p−1)λ+1︸ ︷︷ ︸
xp

c(p−1)λ+2 . . . cpλ+1︸ ︷︷ ︸
xp+1

. . . .

In general, we takexp = c(p−1)λ+1 as representative of all the concentrations fromc(p−2)λ+2

to c(p−1)λ+1.
To define a flux from the groupingxp to xp+1 we eliminatec(p−1)λ+2 to cpλ between

the fluxes
J(p−1)λ+1 = a(p−1)λ+1c(p−1)λ+1c1− b(p−1)λ+2c(p−1)λ+2

J(p−1)λ+2 = a(p−1)λ+2c(p−1)λ+2c1− b(p−1)λ+3c(p−1)λ+3
...

...
...

...

Jpλ = apλcpλc1− bpλ+1cpλ+1

(3.1)
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leaving( λ+1∏
n=2

b(p−1)λ+n

) λ∑
k=1

cλ−k1 J(p−1)λ+k
a(p−1)λ+kQ(p−1)λ+k

=
( λ∏
n=1

a(p−1)λ+n

)
c(p−1)λ+1c

λ
1

−
( λ+1∏
n=2

b(p−1)λ+n

)
cpλ+1. (3.2)

In (3.2) we now replacec(p−1)λ+1 by xp andcpλ+1 by xp+1; we then use (3.2) to define the
flux from xp to xp+1. The equations we postulate for thexp(t) and the new fluxesLp(t)
are then

ẋp = Lp−1− Lp
λ

, (p > 3) Lp = λ(αpxλ1xp − βp+1xp+1), (p > 2)

ẋ2 = L1− L2

λ
L1 = α1x

λ+1
1 − β2x2

(3.3)

whereαp, βp are the rescaled forward and backward rate coefficients defined from (3.2) by

αp =
λ∏
n=1

a(p−1)λ+n βp+1 =
λ+1∏
n=2

b(p−1)λ+n. (3.4)

We have defined the fluxesLp for p > 2 in a slightly different way to that presented in
[5] in order that the fluxLp represents the quantity of material being moved from clusters
of size3p := (p − 1)λ + 1 to those of size3p+1. The fluxL1 has a separate definition
omitting the multiplicativeλ. However, when all theLp variables are eliminated from
(3.3) the same system is obtained as in [6]. Constant ratesar = a, br = b in the full
model correspond to constant ratesαp = aλ, βp = bλ in the reduced model (3.3), so that
αxλ1/β = (ac1/b)

λ = θλ. The partition functionQr is now sampled only at certain cluster
sizes,Q(p−1)λ+1 = (α/β)p−1. The coarse-graining procedure is generalized in [6, 15].

Equations (3.3) with constant coefficientsαp = α and βp = β are identical to (2.1)
(with α, β and xλ1 replacinga, b and c1 respectively and withL1 replacingJ1 andLp/λ
replacingJp for p > 2). In the remainder of this section we assess the validity of the
coarse-graining procedure by comparing the large-time behaviour of (3.3) to that of (2.1);
the former can immediately be deduced from the latter.

3.2. Equilibrium solution

The equilibrium solution to (3.3) is

xp = Q(p−1)λ+1x
(p−1)λ+1
1 = θ(p−1)λx1 (3.5)

so, at equilibriumxp = c(p−1)λ+1. This solution is relevant only forθ < 1.
Sincexp corresponds toc(p−1)λ+1, we assign a representative mass of(p − 1)λ+ 1 to

the cluster denotedxp. The appropriate definition of density for the contracted system is
then

µ :=
∞∑
p=1

[(p − 1)λ+ 1]xp. (3.6)

An extra factor ofλ appears in the evolution equation forµ due to the fact thatλ monomers
need to be added to take a cluster fromxp to xp+1; in place of (1.4), it follows from (3.3)
that we have

µ̇ = λL1+
∞∑
p=1

Lp. (3.7)
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At equilibrium (3.6) can be evaluated to give

µ = x1[ 1+ (λ− 1)θλ]

(1− θλ)2 . (3.8)

By comparing this with (2.4) we obtain a measure of the error induced by the contraction
procedure. The key point, however, is that the coarse-graining does not affect the nature
of the equilibrium solution; density still diverges ifθ > 1 and is finite ifθ < 1, giving
the same regions of physical and unphysical behaviour as for the uncontracted case, the
equilibrium solution again providing the large-time behaviour forθ < 1.

3.3. Steady-state solution

As with the original formulation (2.1), there is a one-parameter family of steady-state
solutions given by constant flux,Lp(t) = L for all p > 2 and L1(t) = L/λ. For
L = λx1(αx

λ
1 − β), the solution isxp = x1 for all p and, for θ > 1, this steady-state

solution provides the large-time behaviour. Thus the bifurcation diagram for the reduced
system (3.3) is qualitatively identical to that for the full system (see figure 1).

The ratio of the fluxes of the steady-state solution in the reduced system to that in the
original system is

L

J
= λbλ−1(θλ − 1)

(θ − 1)
. (3.9)

Thus the steady-state flux in the contracted system (3.3) is in general not the same as that
in the original system (2.1). However, there is a degree of arbitrariness in the definitions of
the reaction rates and timescales in the contracted system; specifically, a simple rescaling
of time t = t̂/t0 in the original system (2.1) alters the values ofa and b to â = a/t0,
b̂ = b/t0 (leaving θ unchanged); in view of (3.4), these changes ina and b correspond
to rescalingt in the coarse-grained system by a different factor, namelytλ0 . We can thus
make the steady-state fluxes in both systems equal by formulating the original problem on a
timescale which forces the right-hand side of (3.9) to be unity; this is achieved by choosing

t0 = b
[
λ(θλ − 1)

(θ − 1)

]1/(λ−1)

. (3.10)

These comments indicate a significant deficiency in the coarse-graining procedure, in
that it does not in general preserve the timescales of the original system. However, the
qualitative behaviour is similar to that of the uncontracted system and judicious choices of
scaling can lead to good agreement in the quantitative behaviour also.

3.4. Large-time asymptotics

Having seen that the structure and form of the time-independent solutions of the Becker–
Döring equations are largely unaltered by the coarse-graining contraction procedure, we
now examine the large-time kinetics.

For θ > 1, our solution at O(1) comprises (cf (2.11))

xp = x1 Lp = λx1(αx
λ
1 − β) p/σ(t) < 1

xp = 0 Lp = 0 p/σ(t) > 1
(3.11)

with (cf (2.12))

σ(t) = (αxλ1 − β)t µ(t) ∼ 1
2λx1(αx

λ
1 − β)2t2 as t →∞. (3.12)
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The ratio of the translational speed of the transition region in the contracted set of
equations (3.3) to that of the full system (2.1) is

λσ̇

ṡ
= λbλ−1(θλ − 1)

(θ − 1)
. (3.13)

The λ is included on the left-hand side because a unit increment inp corresponds to an
increment ofλ in the aggregation numberr. The right-hand side of the expression (3.13)
is identical to that of (3.9); thus by rescaling time by (3.10) both the flux ratio and speed
ratio can be corrected.

4. Constant density systems

4.1. Introduction

In this section we aim to construct asymptotic solutions to the density conserving version
of the Becker–D̈oring equations (1.5) proposed by Penrose and Lebowitz [10] in a special
case. The case we shall examine is that in which the forward reaction dominates the
reverse. We shall use matched asymptotic expansions to identify the various stages that the
cluster-formation process passes through and to determine the leading order solutions.

In this formulation the monomer concentration is allowed to vary (c1 = c1(t)), but the
density (1.3) is fixed, so the monomer concentration satisfies the first of (1.5). Conservation
of density is the first of four properties of the system of equations (1.5) that we shall
note. Other important properties are the existence of a Lyapunov function (2.6), which
corresponds to the free energy of the system, the existence of a unique equilibrium solution,
cr = Qrc

r
1 and, finally, the weak form

∞∑
r=1

gr ċr =
∞∑
r=1

(gr+1− gr − g1)Jr (4.1)

where {gr}∞r=1 is an arbitrary sequence satisfyingar(gr+1 − gr) = O(gr) as r → ∞ (see
Ball et al [2] for detailed analysis using this weak form). While we shall not make direct
use of (4.1), we will ensure that a similar set of identities exists after the coarse-graining
contraction procedure has been applied.

For any density, there is a unique equilibrium value of the monomer concentration
c1, determined by (2.4) and being such thatθ < 1 for any finite % (in fact, θ =
(b + 2a% − (b2 + 4ab%)1/2)/2a%), and the large-time behaviour follows the approach to
equilibrium described in section 2.4.4. In this case the speed of propagation of the transition
region is best found from the matching with the WKB solution in the far-field region, again
giving s(t) = (b− ac1)t . When the forward reaction dominates the reverse it is possible to
make significant further analytical progress in understanding the time-dependent problem,
and the remainder of this section is devoted to this coagulation dominated case. We take
ar = a, with a = 1 without loss of generality, andbr = b = ε with ε � 1, so that the
equations we analyse are

ċ1 = −J1−
∞∑
r=1

Jr ċr = Jr−1− Jr (r > 2) Jr = crc1− εcr+1. (4.2)

We haveθ ∼ 1−√ε/% as ε → 0. For simplicity monodisperse initial conditions will be
assumed (c1 = %, cr = 0 for r > 2), though the analysis readily generalizes. Four distinct
timescales need investigation.
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4.2. t = O(1)
The first timescale is more easily analysed by a transformation of both the time variable
and the dependent variables. We substitutecr(t) = c1(t)ξr (τ ), so thatξ1 = 1. The new
time variableτ is defined by

τ =
∫ t

0
c1(s) ds. (4.3)

This transforms equations (4.2) to, at leading order inε (the fragmentation terms being
negligible),

dξr
dτ
= ξr−1+4ξr r > 2 (4.4)

where4(τ) =∑∞k=1 ξk(τ ), which from (4.4) satisfies

d4

dτ
= 42 (4.5)

so that4 = (1− τ)−1. Equations (4.4) can then be successively solved to give

ξr = τ r−1(r − τ)
r!(1− τ) . (4.6)

The equation forc1 from (4.2) now reduces to

dc1

dτ
= −(1+4)c1 (4.7)

and gives

c1 = %(1− τ)e−τ (4.8)

as found by Brilliantov and Krapivsky [4]. Thus the leading order relationship betweent

andτ is

%t = e[E1(1− τ)− E1(1)] (4.9)

whereE1(z) is the exponential integral defined in equation (5.1.1) of Abramowitz and
Stegun [1].

It is not hard to see from this solution (which gives the exact solution to the pure
coagulation problem) that a new timescale is needed whenτ approaches unity, and in this
limit t → ∞. The fragmentation terms in the kinetic equations (4.2) become significant
whenc1 ∼ ε, so we can deduce that the required new scalings areτ = 1+ ετ2, c1 = εC1.
Reverting to the original variablescr = ξrc1 then, since

cr = %τ r−1(r − τ)e−τ
r!

(4.10)

we havecr ∼ %(r − 1)/er! as τ → 1. (4.9) is equivalent to

%t

e
= −E1(1)− γ − log(1− τ)−

∞∑
n=1

(τ − 1)n

nn!
for τ < 1 (4.11)

which implies that t = (e/%) log(1/ε) + O(1) for τ2 = O(1), and we definet2 =
t − (e/%) log(1/ε).
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4.3. t = (e/%)log(1/ε)+O(1)
The leading order equations on the timescalet2 = O(1) are

Ċ1 = c2+ %
e
− %
e
C1 ċr = 0 for r > 2. (4.12)

Matching with the previous timescaling we therefore have, to leading order,

cr = %(r − 1)

er!
for r > 2 (4.13)

with the scaled monomer concentration given by

C1 = 3
2 + % exp(−γ − 1− E1(1)− %t2/e) (4.14)

again matching with the previous timescale ast2→−∞ using (4.8) and (4.11).
Rather than tending to zero, as would occur in the pure coagulation case, the monomer

concentration thus tends over this timescale to an O(ε) constant; all the other concentrations
are constant to leading order. Since these values do not correspond to the equilibrium
configuration, it is clear that at least one further timescale is needed in which other terms
enter the leading order rate equations.

4.4. t = O(1/ε)
In order to obtain the required balance in the dimer equation, the next timescale can be
identified ast3 = εt , giving

ε
dC1

dt3
= c2− C1

∞∑
r=2

cr +
∞∑
r=1

cr+1− εC2
1

dc2

dt3
= εC2

1 − C1c2− c2+ c3

dcr
dt3
= C1cr−1− C1cr − cr + cr+1 r > 3 (4.15)

with leading order initial conditions determined from (4.13), (4.14), as

at t3 = 0 C1 = 3
2 cr = %(r − 1)

er!
. (4.16)

At leading order we therefore have

C1(t3) = 1+ c2(t3)∑∞
r=2 cr(t3)

dc2

dt3
= −C1c2− c2+ c3

(4.17)

and (4.15).
It does not seem possible to solve the equations for the remaining variablescr , but we

can outline the behaviour ast3→∞, which is determined by the continuum limit of (4.15).
As we shall see,c2/

∑∞
r=2 cr → 0 as t3 → +∞ (see (4.19)), so thatC1(t3) → 1. The

large-time limit of (4.15) is then simply

∂c

∂t3
= ∂2c

∂r2
(4.18)
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which applies forr = O(t1/23 ) and has as its large-time behaviour the mass-preserving
similarity solution

c(r, t3) ∼ %re−r
2/4t3

2
√
πt

3/2
3

as t3→∞ with r = O(t1/23 ) (4.19)

since the boundary conditionc → 0 as r/t1/23 → 0 is required to match; the density
condition ∫ ∞

0
rc(r, t3) dr ∼ % (4.20)

has been imposed. From (4.15) and (4.19), we havecr ∼ %(r − 1)/2
√
πt

3/2
3 as t → +∞

for r = O(1) with r > 2.

4.5. t = O(1/ε2)

We see from (4.19) that the initial mass has spread out into a smooth, slowly varying (inr)
distribution, with the concentrationscr (r > 2) all decaying to zero ast3→∞. However,
since this still does not converge to the equilibrium solution ast3 → ∞, a further scaling
is required, the continuum formulation of the problem still being applicable in the outer
region.

The monomer concentration has, to leading order, reached its equilibrium valuec1 = ε,
and we shall need the second term in its expansion,c1 ∼ ε + ε3/2D1. Introducing the
scalingst4 = ε2t , r4 = ε1/2r, andcr = εC(r4, t4), we find

∂C

∂t4
= ∂2C

∂r2
4

−D1(t4)
∂C

∂r4
(4.21)

for r4 = O(1); (4.21) governs the outer solution. Forr = O(1) we must return to the
discrete Becker–D̈oring equations (4.2) and use the current scalings (wherebycr = εCr )
to give the inner solution. To leading order, (4.2) is thenCr−1 − 2Cr + Cr+1 = 0, and
matching thus givesCr = 1 for all r. The matching condition on the outer problem (4.21)
is thereforeC = 1 at r4 = 0; moreover (4.19) implies that the appropriate initial condition
is C = −%δ′(r4) at t4 = 0. Conservation of mass (4.20) together with (4.21) gives

D1(t4) = −1

/∫ ∞
0
C(r4, t4) dr4. (4.22)

The time-dependent problem (4.21) cannot be solved explicitly due to the (novel) non-local
nonlinearity caused by the presence ofD1(t4) (see (4.22)), but the large-time behaviour is
given by the time-independent solution

C = exp(−r4/√%) D1 = −1/
√
% (4.23)

which is in leading order agreement forr4 = O(1) with the exact equilibrium solution (2.3)
with θ = 1−√ε/% +O(ε).

In summary, the solution thus proceeds through four timescales. During the first the
monomers aggregate until their concentration becomes small. Over the second the monomer
concentration stabilizes, and the other concentrations are constant. This timescale is shifted
from the first by an amount(e/%) log(1/ε), which can be interpreted as a waiting time before
the cluster distribution starts to contain appreciable numbers of larger clusters. During the
third timescale (t = O(1/ε)), processes akin to diffusion inr-space occur, the distribution
evolving into the single-humped function (4.19) with a peak atr = √2εt . This shape is
seen in other applications with different governing equations, for example it is qualitatively
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similar to that found by Hounslowet al [7, 8], in studies of pure aggregation in the full
Smoluchowskii equations with a constant kernel. Finally, the equilibrium configuration is
approached over the timescalet = O(1/ε2), with all concentrations small and with the
profile reverting to a monotonically decaying distribution.

5. Contracted constant density system

5.1. Introduction

The coarse-grained contraction of the constant density version of the Becker–Döring
equations was originally given in [5]; it constitutes a modification to (3.3) whereby we
have the additional equation

ẋ1 = −λL1−
∞∑
p=1

Lp (5.1)

for the monomer concentration. The system (3.3), (5.1) then possesses the four previously
noted properties of the uncontracted system (1.5), namely (a) a unique equilibrium solution
xp = Q(p−1)λ+1x

(p−1)λ+1
1 , (b) a conserved quantity (the density) defined by the modified

definition (3.6), (c) a Lyapunov functionV = ∑∞p=1 xp(log(xp/Q(p−1)λ+1) − 1), and (d) a
modified weak form

∞∑
p=1

gpẋp = (g2− (λ+ 1)g1)L1+
∞∑
p=2

(
gp+1− gp

λ
− g1

)
Lp. (5.2)

In the remainder of this section, we solve the coagulation dominated limit of these
equations, namely

ẋ1 = −λL1−
∞∑
p=1

Lp ẋ2 = L1− L2

λ
L1 = xλ+1

1 − ελx2

ẋp = Lp−1− Lp
λ

, (p > 3) Lp = λ(xλ1xp − ελxp+1), (p > 2)

(5.3)

and show that its solution structure is the same as that for the full system (4.2), demonstrating
that the coarse-graining approximation procedure does not introduce spurious behaviour into
the reduced system of equations.

5.2. t = O(1)
We follow the same procedure as in section 4. First, we substitutexp(t) = x1(t)ζp(τ ) where
the new time variable is defined by

τ =
∫ t

0
xλ1(s) ds. (5.4)

Thus to leading order (5.3) becomes

dζp
dτ
= ζp−1+ λϒζp (5.5)

whereϒ =∑∞k=1 ζk satisfies

dϒ

dτ
= λϒ2− (λ− 1)ϒ (5.6)
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which contains an additional term not present in the uncontracted case. Imposingϒ(0) = 1
gives forλ > 1

ϒ(τ) = λ− 1

λ− e(λ−1)τ
. (5.7)

Using an integrating factor to solve (5.5) sequentially, we find

ζp(τ ) = 1

λe−(λ−1)τ − 1

[ p−2∑
k=0

λ(−1)k+pτ k

(λ− 1)p−k−1k!
− τp−1

(p − 1)!
− λ(−1)pe−(λ−1)τ

(λ− 1)p−1

]
for p > 2. (5.8)

The equation forx1, namely

dx1

dτ
= −(1+ λϒ)x1 (5.9)

can now be integrated to give

x1(τ ) = µ

λ− 1
(λe−λτ − e−τ ) (5.10)

which enables the leading order relationship betweent andτ to be obtained as

µλt

(λ− 1)λ
=
∫ τ

0

ds

(λe−λs − e−s)λ
. (5.11)

Hereµ is related toθ through (3.8).
The solution (5.10) breaks down asτ → (logλ)/(λ−1), which corresponds tot →∞,

indicating the need for a new timescaleτ2, given by τ = (logλ)/(λ − 1) + ετ2. An
asymptotic expansion of (5.11) reveals

µλt ∼ λλ/(λ−1)

(λ− 1)(−ετ2)λ−1
asτ2→−∞. (5.12)

In the new region we shall use the variablesX1 = ε−1x1 andxp = ζpx1. From the analysis
above we find that the appropriate matching conditions ast →∞ are

x1 ∼ λ1/(λ−1)2

((λ− 1)µt)1/(λ−1)

ζp ∼ µλ/(λ−1)(logλ)p−1t1/(λ−1)

λλ/(λ−1)2(λ− 1)p−1/(λ−1)

[
λ

∞∑
k=0

(− logλ)k

(k + p − 1)!
− 1

(p − 1)!

]
.

(5.13)

The concentrationsxp asymptote to the constants

xp ∼ µλ−1/(λ−1)(logλ)p−1

(λ− 1)p

[
λ

∞∑
k=0

(− logλ)k

(k + p − 1)!
− 1

(p − 1)!

]
for p > 2 (5.14)

asτ → (logλ)/(λ− 1).

5.3. t = O(ε1−λ)

The leading order equations on the second timescalet2 = ελ−1t implied by (5.12) are

dX1

dt2
=
(
x2+ λ

∞∑
p=2

xp

)
− λXλ1

∞∑
p=2

xp
dxp
dt2
= 0 for p > 2 (5.15)
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and thexp for p > 2 are thus given by the constants (5.14). The solution forX1 is given
by

t2 = λ1/(λ−1)µ−1
∫ ∞
X1

du

uλ − 1− (λ−1−logλ)
(λ−1)2

(5.16)

the constant of integration being fixed by requiringt2→ 0 asX1→∞ (in order to match
with (5.13)); (5.16) implies

x1→ ε

(
λ(λ− 1)− logλ

(λ− 1)2

)1/λ

as t2→+∞. (5.17)

5.4. t = O(ε−λ)
Here we havex1 = εX1 and xp = O(1) for p > 2, with the required timescale being
t3 = ελt . The timescale of the coarse-grained model is thus different from that of the
uncontracted one. We then have

ε
dX1

dt3
= x2− εXλ+1

1 − λXλ1
∞∑
p=2

xp + λ
∞∑
p=1

xp+1

dx2

dt3
= εXλ+1

1 −Xλ1 − x2+ x3

dxp
dt3
= xp−1X

λ
1 − xpXλ1 − xp + xp+1 p > 3

(5.18)

the leading order solution of the first equation being

Xλ1 = 1+ x2

λ
∑∞

p=2 xp
. (5.19)

As in section 4.4 the concentrationsxp cannot in general be found, but we can give the
large-time asymptotic behaviour of solutions; we haveX1 → 1 ast3 → ∞, together with
the continuum limit of (5.18), which is the heat equation (cf (4.18)), giving

x(p, t3) ∼ µpe−p
2/4t3

2λ
√
πt

3/2
3

as t3→∞ with p = O(t1/23 ). (5.20)

5.5. t = O(ε−(λ+1))

Once again, the evolution forλ > 1 occurs on a timescale different from that of the
uncontracted model. Here we must taket4 = ελ+1t , p4 = ε1/2p, x1 ∼ ε + ε3/2Y1,
xp ∼ εX(p4, t4) for p4 = O(1). To leading order this gives

∂X

∂t4
= ∂2X

∂p2
4

− λY1
∂X

∂p4
(5.21)

for the outer solution. A similar analysis to that of section 4.5 gives the inner solution
Xp = 1 for p = O(1), andY1 = −1/λ

∫∞
0 X(p4, t4) dp4; (5.21) is to be solved subject to

X→ 0 asp4→∞ andX = 1 atp4 = 0. The large-time behaviour is

X = exp
(
−p4

√
λ/µ

)
Y1 = −1/

√
λµ (5.22)

which is consistent with the exact solution (3.5) withθ ∼ 1−√ε/λµ.
The structure of the asymptotic solution is thus broadly similar to the full, uncontracted

model. However, the timescales involved become longer as the mesh parameterλ is
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increased. The second timescale is longer than the first forλ > 1, rather than just being
a timeshift. The exact form of the distribution is also different and the expression for
the distribution at the end of the second timescale is unfortunately much more complex
than (4.13). Nevertheless, by the end of the third timescale (t = O(ε−λ)) the form of the
distribution has returned to the simple form of (4.19). The fourth timescale again marks the
approach to equilibrium.

6. Discussion

There are several studies of steady-state solutions and closed form solutions for special initial
conditions. We have given a much more general approach to the description of the large-
time behaviour in the constant monomer case (with particular focus on the the evolution
of clusters of large size, this being a completely new result) and of the various temporal
phases that arise in the aggregation-dominated constant mass case (including several new,
explicit descriptions of the intermediate asymptotic behaviour).

Our results enable us to make a quantitative comparison between the predictions of
the original system and of the coarse-grained system. The results in section 5 have been
presented in the unscaled time variable, leading to significant differences in the kinetics;
for example, the original formulation of the problem reaches equilibrium on a timescale of
O(1/ε2), whereas the coarse-grained contraction equilibrates on a timescale of O(ε−λ−1).
These differences can be corrected for by application of the rescaling (3.10). Under this
choice of scaling, the full system of equations (4.2) passes through the four timescales
t̂ = O(ε), ε log(1/ε)+O(ε), O(1) and O(1/ε), whereas the contracted system (5.3) reacts
on timescales of̂t = O(ελ), O(ε), O(1) and O(1/ε). Thus the fastest timescale is not well
approximated by the coarse-grain contraction procedure, but the slower timescales can be
correctly reproduced if one is careful with the choice of scaling. In the systems where the
coarse-grained contraction has been used previously, there have been physical parameters
in the problems suggesting a natural ‘mesh size’ forλ. Given the absence of a natural
size-scale forλ in the models considered here, the agreement between the contracted model
and the full Becker–D̈oring equations is encouraging. However, our asymptotic analysis
has systematically shown the widespread applicability of continuum versions of the model,
thereby indicating that such continuum limits are viable competitors to coarse-graining in
terms of simplifying the system.

This work also sheds some light on issues of metastable solutions [9] and their evolution.
At a superficial level we see that the late stages of the reaction occur on long timescales (as
found by balancing in our asymptotic analysis), and these long timescales can be interpreted
as a type of metastability. At a deeper level, we note that the density-conserving systems
studied here have a Lyapunov function (V (c)) which corresponds to the free energy of the
system (4.2). We now analyse the evolution of this free energy. For monodisperse initial
conditions,V takes the value% log(%/e) at t = 0, dropping to%(1−1/e) logε by the end of
the t = O(1) timescale and, to leading order, remaining at this value throughout the second
timescale. By the end of the third timescale (t = O(1/ε)), V has descended further, to
% logε, so its value is almost twice as large in magnitude as during thet ∼ (e/%) log(1/ε)
timescale. Over the final, slowest timescaleV does not alter at leading order, taking its
equilibrium value throughout. We can identify solutions whose leading order free energy
is equal to the free energy at equilibrium as being in a metastable state. A similar analysis
can be carried through with the coarse-grain contracted system with similar results. For
monodisperse initial conditions,V = % log(%/e) at t = 0, reducing to%(1−λ−λ/(λ−1)) logε
by the end of the second timescale and to% logε by the end of the third. To leading order, it
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then adopts the equilibrium value, even though the system is not at equilibrium. The system
continues to converge to equilibrium over the longest timescale, during which correction
terms in the Lyapunov function decrease.

The transformation in section 2.4.4 which enabled results forθ < 1 to be immediately
deduced from those forθ > 1 can be extended to general rate constantsar, br . Details of
this are given in appendix B. It is hoped to extend the asymptotic results of this paper to
more general reaction rates in a subsequent paper.
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Appendix A. Solutions for exponentially decaying initial data

Here we analyse the special case of polydisperse initial conditions in which the cluster
size decays exponentially for larger, with logcr ∼ −ωr as r → ∞ at t = 0 for some
constantω.

The one-parameter family of solutions to Clairaut’s equation (2.18) is

F(η) = −ωη + be−ω − b − ac1+ ac1eω. (A.1)

However, this holds only for

η > ηc(ω) ≡ ac1eω − be−ω (A.2)

at η = ηc the required solution switches to the envelope solution (2.19) (as is typical for
Clairaut’s equation, cf [11]),F andFη being continuous atη = ηc. For ac1− b < η < ηc,
F is given by (2.19) and the wavespeed is thus stillac1− b, with the large-time behaviour
differing from that discussed in earlier sections only forr/t > ηc, where the solution is
exponentially small.

Appendix B. Equivalence transformations

Our purpose here is to note some generalizations of the transformation given in section 2.4.4,
treating the constant monomer case (1.2) with general kernels. Writing

cr = φr

1+Kdr (B.1)

where

d1 = 0 dr =
r−1∑
s=1

1

asQsc
s+1
1

for r > 2 (B.2)

andK is an arbitrary constant, yields

φ̇r = Hr−1−Hr Hr = αrφrφ1− βr+1φr+1 (B.3)

with

αr = 1+Kdr+1

1+Kdr ar βr = 1+Kdr−1

1+Kdr br . (B.4)
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The partition function for (B.3), defined byαr�r = βr+1�r+1, �1 = 1, is given by

�r = Qr(1+Kdr)2 (B.5)

and, defining

ν1 = 0 νr =
r−1∑
s=1

1

αs�sφ
s+1
1

for r > 2 (B.6)

we have

νr = dr

1+Kdr . (B.7)

The inverse transformation is

φr = cr

1−Kνr Qr = �r(1−Kνr)2 dr = νr

1−Kνr
ar = 1−Kνr+1

1−Kνr αr br = 1−Kνr−1

1−Kνr βr .
(B.8)

If αr = α, βr = β are constant then

νr = 1− (β/αφ1)
r−1

φ1(αφ1− β) (B.9)

and a system with rate constantsar , br given in terms ofα and β by (B.8) is therefore
mapped by this transformation into a system in which the rate constants are independent
of r.

In the steady-state case

arc1cr − br+1cr+1 = J cr = Qrc
r
1(1− Jdr) (B.10)

we have

αrφ1φr − βr+1φr+1 = J +K φr = �rφr1(1− (J +K)νr). (B.11)

In view of (B.11), by the choices

J = 1/d∞ K = −1/d∞ (B.12)

and

J = 0 K = 1/ν∞ (B.13)

we are thus able to map between the two types of time-independent solution described in
section 2. If in the equilibrium solution

cr = Qrc
r
1 (B.14)

there is a critical valuec1 = cc, say, such that (B.14) is of finite mass forc1 < cc only,
then it will grow exponentially inr for c1 > cc. It follows thatd∞ is bounded forc1 > cc
providedar does not decay exponentially inr and the transformation (B.1) takes one from
the steady-state solutioncr = Qrc

r
1(1− dr/d∞) with c1 > cc to the equilibrium solution

φr = �rφ
r
1, as noted for the special case of constant rate coefficients in section 2.4.4; it

follows from (B.7) thatν∞ is then unbounded.
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